Robust Ear Recognition via Nonnegative Sparse Representation of Gabor Orientation Information

نویسندگان

  • Baoqing Zhang
  • Zhichun Mu
  • Hui Zeng
  • Shuang Luo
چکیده

Orientation information is critical to the accuracy of ear recognition systems. In this paper, a new feature extraction approach is investigated for ear recognition by using orientation information of Gabor wavelets. The proposed Gabor orientation feature can not only avoid too much redundancy in conventional Gabor feature but also tend to extract more precise orientation information of the ear shape contours. Then, Gabor orientation feature based nonnegative sparse representation classification (Gabor orientation + NSRC) is proposed for ear recognition. Compared with SRC in which the sparse coding coefficients can be negative, the nonnegativity of NSRC conforms to the intuitive notion of combining parts to form a whole and therefore is more consistent with the biological modeling of visual data. Additionally, the use of Gabor orientation features increases the discriminative power of NSRC. Extensive experimental results show that the proposed Gabor orientation feature based nonnegative sparse representation classification paradigm achieves much better recognition performance and is found to be more robust to challenging problems such as pose changes, illumination variations, and ear partial occlusion in real-world applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust ear identification using sparse representation of local texture descriptors

Abstract: Automated personal identification using localized ear images has wide range of civilian and law-enforcement applications. This paper investigates a new approach for more accurate ear recognition and verification problem using the sparse representation of local graylevel orientations. We exploit the computational simplicity of localized Radon transform for the robust ear shape represen...

متن کامل

Gabor feature based robust representation and classification for face recognition with Gabor occlusion dictionary

By representing the input testing image as a sparse linear combination of the training samples via l1-norm minimization, sparse representation based classification (SRC) has shown promising results for face recognition (FR). Particularly, by introducing an identity occlusion dictionary to code the occluded portions of face images, SRC could lead to robust FR results against face occlusion. Howe...

متن کامل

Gabor Feature Based Sparse Representation for Face Recognition with Gabor Occlusion Dictionary

By coding the input testing image as a sparse linear combination of the training samples via l1-norm minimization, sparse representation based classification (SRC) has been recently successfully used for face recognition (FR). Particularly, by introducing an identity occlusion dictionary to sparsely code the occluded portions in face images, SRC can lead to robust FR results against occlusion. ...

متن کامل

Robust Palmprint Recognition Based on Directional Representations

In this paper, we consider the common problem of automatically recognizing palmprint with varying illumination and image noise. Gabor wavelets can be well represented for biometric image for their similar characteristics to human visual system. However, these Gabor-based algorithms are not robust for image recognition under non-uniform illumination and noise corruption. To improve the recogniti...

متن کامل

Sparse Representation and Dictionary Learning for Biometrics and Object Tracking

of a dissertation at the University of Miami. Dissertation supervised by Professor Mohamed Abdel-Mottaleb. No. of pages in text. (131) Biometrics attracted the attention of researchers in computer vision and machine learning for its use in many applications. We propose systems for face and ear recognition, gender classification and object tracking. First, we present a fully automated system for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014